

International Journal of Medicinal Chemistry & Analysis

www.ijmca.com

e ISSN 2249 - 7587 Print ISSN 2249 - 7595

METHOD DEVELOPMENT AND VALIDATION OF EZETIMIBE AND SIMVASTATIN IN PHARMACEUTICAL DOSAGE FORM BY USING RP-HPLC METHOD

Taj Mohammad Alikhan Pathan^{*}, M Prasad Rao, D Narasimha Rao, M Manichandana, D Rama Rao, Ch Malathi Suvarna

M.A.M. College of Pharmacy, Kesanupalli, Narasaraopet, Andhra Pradesh, India.

ABSTRACT

A simple, specific, accurate and precise reverse phase high pressure liquid chromatographic method has been developed for the simultaneous determination of Lornoxicam and Thiocolchicoside in tablets by reverse phase C8 column (X terra, 4.6 x 250mm, 5 μ m, Make: ACE) or equivalent. The sample was analyzed using Buffer (Weighed 2.5milligrams of Sodium di hydrogen ortho phosphate in 1000 ml HPLC water, adjust pH 4.0 with sodium hydroxide) Acetonitrile in the form of 70% and 30% as a mobile phase at a flow rate: 1.0 mL per min and detection at 230 nm. The retention time for Simvastatin and Ezetimbe was found to be 4.65and 6.80 min respectively. The limit of detection is 0.37 μ g/ml and the limit of quantitation is 0.12 μ g/ml. Linearity for Lornoxicam and Thiocholchicoside were found in the range of 1-50 μ g/ml for SIM &5 - 25 μ g/ml for EZE. The Accuracy % recoveries are between 98.0 % to 102.0%. The present method is successfully applied for the estimation of Lornoxicam market formulation-Tablet.

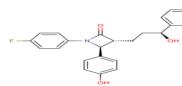
Keywords: Simvastatin, Ezetimbe, Reverse-Phase High-Performance Liquid chromatography.

INTRODUCTION

The proposed HPLC method was found to be simple, specific, precise, accurate, rapid and economical for simultaneous estimation of Ezetimibe and Simvastatin in pharmaceutical dosage form. The developed method was validated in terms of accuracy, precision, linearity, robustness and ruggedness, and results will be validated statistically according to ICH guidelines. The Sample recoveries in all formulations were in good agreement with their respective label claims. The literature review reveals that there are some analytical methods reported for Ezetimibe and Simavastatin either individually or in combination with other drugs by RP-HPLC method and most of the work done on biological fluids. Various analytical methods like UV, HPLC, TLC, HPTLC, LC-MS-MS, are reported for the analysis of these two compounds individually and also in combination with other drugs. Present study aims to develop simple, rapid, greater sensitivity and faster elution by RP-HPLC for the

simultaneous estimation of Ezetimibe and Simvastatin and to decrease retention time, low cost. The developed method will be validated in terms of accuracy, precision, linearity, robustness and ruggedness, and results will be validated statistically according to ICH guidelines [1-4].

Instruments and Equipment's Used Instruments

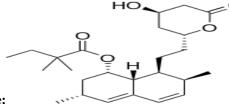

• UV-3000⁺ LABINDIA Double beam with UV win 5 software UV-Visible spectrophotometer with 1cm matched quartz cells.

• WATERS HPLC, Model: Aliance 2695, UV- Visible Dual absorbance Detector 2487, with an automated sample injector. The output signal was monitored and integrated using Empower 2 software, Symmetry C8 (4.6 x 150mm, 5µm, Make: XTerra) or equivalent column was used for separations.

Corresponding Author: - Taj Mohammad Alikhan Pathan Email: tajkhan.pharma@gmail.com

DRUG PROFILE a) Ezetzamibe:

Structure:


Chemical name :(3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3- hydroxypropyl]-4- (4hydroxyphenyl)azetidin-2-one

Molecular formula	$: C_{24}H_{21}F_{2}NO_{3}$			
Molecular Weight	: 409.4252			
Half life	: 19–30 hours			
Dose	: 10 mg			
Description	: white coloured			
1	. white coloured			
CRYSTALLINE powder				
Solubility	: freely to very soluble in			
ethanol, methanol, acetone	2.			
Melting point	: 164–166 °C			
Category	: Anticholesteremic Agents,			
Cholesterol Absorption In	hibitors			
Uses	: inhibits the absorption of			
cholesterol from the intest	ine			
Side effects	: gastrointestinal disturbances,			
headache, fatigue,	myalgia; rarely arthralgia,			
hypersensitivity reactions	s (including rash, pancreatitis,			

cholelithiasis, cholecystitis, thrombocytopenia, myopathy, and rhabdomyolysis

Brand Name : Zedoc, Ezetib, Ezetrol, Maxetibe, Zemitra, Zetavim

b) Simvastatin

Structure:

Chemical name :((1S,3R,7S,8S,8aR)-8-{2-[(2R,4R)-4-hydroxy-6-oxooxan-2-yl]ethyl}3,7-dimethyl-1,2,3,7,8,8a-hexahydronaphthalen-1yl2,2dimethylbutanoate.

J 1 J	
Molecular formula	$: C_{25}H_{38}O_5$
Molecular Weight	: 418.5662
Half life	: 3 hours
Category	: Anticholesteremic Agents,
Antilipidemic Agents,	
Dose	: 5 mg to 80 mg
Description	: white coloured powder
Solubility	: ethanol, Soluble in DMSO,
Storage conditions	: Store at 20°C.

Use : Treatment of dyslipidemia and the prevention of cardiovascular disease.

Brand Name : Cholestat, Coledis, Colemin, Lipex, Labistatin [5-9].

Reagents and Standard – Ezetimibe & Simvastatin Tablets:

- a. Water HPLC Grade.
- b. Ezetimibe & Simvastatin Working Standards
- c. Acetonitrile HPLC Grade
- d. Ortho phosphoric acid

Preparation of Phosphate buffer:

Weighed 7.0 grams of KH_2PO_4 into a 1000ml beaker, dissolved and diluted to 1000ml with HPLC water. Adjusted the pH to 4 with Orthophosporic acid.

Preparation of mobile phase

Mix a mixture of above buffer 500 mL (50%) and 500 mL of Acetonitrile HPLC (50%) degas in ultrasonic water bath for 5 minutes. Filter through 0.45 μ filter under vacuum filtration.

Diluent Preparation:

Use the Mobile phase as Diluent.

Preparation of the Ezetimibe & Simvastatin Standard & Sample Solution:

Standard Solution Preparation:

Accurately weigh and transfer 10 mg of Ezetimibe and Simvastatin working standard into a 10mL clean dry volumetric flask add about 7mL of Diluent and sonic ate to dissolve it completely and make volume up to the mark with the same solvent.

(Stock solution).

Further pipette 5ml of Ezetimibe & Simvastatin the above stock solution into a 50ml volumetric flask and dilute up to the mark with diluent.

Further pipette 3ml of Ezetimibe & Simvastatin the above stock solution into a 10ml volumetric flask and dilute up to the mark with diluent.

Sample Solution Preparation:

Accurately weigh and transfer equivalent to 10 mg of Ezetimibe and Simvastatin sample into a 10mL clean dry volumetric flask add about 7mL of Diluent and sonicate to dissolve it completely and make volume up to the mark with the same solvent.

(Stock solution).

Further pipette 5ml of Ezetimibe & Simvastatin of the above stock solution into a 50ml volumetric flask and dilute up to the mark with diluent.

Further pipette 3ml of Ezetimibe & Simvastatin the above stock solution into a10ml volumetric flask and dilute up to the mark with diluent

Procedure:

Inject 20 μ L of the standard, sample into the chromatographic system and measure the areas for the

Ezetimibe and Simvastatin peaks and calculate the %Assay by using the formulae [10-14].

System Suitability

Tailing factor for the peaks due to Ezetimibe & Simvastatin in Standard solution should not be more than 1.5.

Theoretical plates for the Ezetimibe & Simvastatin peaks in Standard solution should not be less than 2000 [15-17].

Table 1. Equipment's

Calculation: (For Ezetimibe)

	Assay %	=		
AT	WS	DT	Р	Avg. Wt
	x	x	x	X 100
AS	DS	WT	100	Label Claim
	Where:			

AT = average area counts of sample preparation. As = average area counts of standard preparation. WS = Weight of working standard taken in mg. P = Percentage purity of working standard LC = LABEL CLAIM OF Ezetimibe mg/ml.

S. No.	Equipment's	Software	Model	Company
1	Electronic Balance	NA	ER200A	Ascoset
2	Ultra-Sonicator	NA	SE60US	Enertech
3	Heating Mantle	NA	BTI	Bio Technics India
4	Thermal oven	NA		Narang
5	pH Meter	NA	AD102U	Adwa
6	Filter Paper 0.45 microns	NA		Milli Pore

Table 2. Materials and Chemicals

S. No.	Chemicals/standards and reagents	Grade	Company
1	Potassium di- Hydrogen Ortho Phosphate	AR	Finar
2	Ortho-Phosphoric Acid	AR	Finar
3	Acetonitrile	HPLC	Merck
4	Water	HPLC	Loba Chemi
5	Ezetimibe	NA	Dr. Reddy's
6	Simvastatin	NA	Dr. Reddy's

Table 3. Optimized Method Parameters

Parameters	Me	thod
Column(Stationary Phase)	Symmetry C8 (4.6 x 150mm, 5	μm, Make: XTerra) or equivalent
Mobile Phase	pH 4.0 Potassium dihydrog	gen Phosphate: ACN(50:50)
Flow rate (ml/min)	0.8 mL	per min
Run time (min)	10	min
Column temperature(°C)	Am	bient
Volume of injection loop (µl)	20) μl
Detection wavelength (nm)	230	5 nm
Drug RT (min)	Ezetimibe	Simvastatin
Diug KI (iliili)	4.4	8.4
Linearity range (µg/ml)	10-50 10-50	
Regression equation	Ezetimibe Simvastatin	
Correlation coefficient	0.9997	0.9998

Table 4. Assay: Analysis of Commercial Formulation

Formulation	Labeled Amount (mg)		% Recovery m	by proposed ethod	%RSD	
	Ezetimibe	Simvastatin	Ezetimibe	Simvastatin	Ezetimibe	Simvastatin
	10	10	99.5	99.7	0.01	0.02

Table 5. Typical chromatogram of formulation (30µg/ml of Simvastatin, 30µg/ml of Ezetimibe)

<u>Accur</u>acy

% of	Pur	e drug	Formulation		Ezetimibe		Simvastatin	
pure	Ezetimibe	Simvastatin	Ezetimibe	Simvastatin	%	Statistical	%recovery	Statistical

drug					recovery	analysis		analysis
spiked								
50%	15	15	30	30	99.2	Mean =	99.3	Mean =
50%	15	15	30	30	99.1	99.10 SD = 0.135	99.0	98.05 SD = 0.058
50%	15	15	30	30	99.1	%RSD = 0.13	99.5	%RSD = 0.05
100%	15	15	30	30	99.6	Mean =	99.4	Mean =
100%	15	15	30	30	99.6	97.58 SD = 0.032	99.5	98.03 SD = 0.045
100%	15	15	30	30	99.5	%RSD = 0.03	99.8	%RSD = 0.04
150%	15	15	30	30	99.0	Mean =	99.5	Mean =
150%	15	15	30	30	99.3	98.80 SD = 0.005	99.3	98.03 SD = 0.015
150%	15	15	30	30	99.5	%RSD = 0.005	99.5	%RSD = 0.01

Table 6. Typical chromatograms of Standard Drugs Ezetimibe and Simvastatin + Ezetimibe

S.No	Linearity Level	Concentration	Area
1	Ι	10ppm	1030282
2	II	20ppm	1958485
3	III	30ppm	2935948
4	IV	40ppm	3876589
5	V	50ppm	4899632
C	orrelation Coefficient		0.9997

Table 7. Simvastatin

S.No	Linearity Level	Concentration	Area
1	Ι	10ppm	1267866
2	II	20ppm	2410930
3	III	30ppm	3614299
4	IV	40ppm	4793817
5	V	50ppm	6044368
Correlation Coefficient			0.9998

Precision:

Table 8. System Precision (Intra Day) The results are summarized EZETIMIBE

Area
2876374
2912457
2899301
2910649
2909773
2901711
15067.5
0.52
Area
3570678
3605812

Injection-3	3590517		
Injection-4	3599152		
Injection-5	3596150		
Average	3592462		
Standard Deviation	13368.8		
%RSD	0.37		
The results are summarized EZETIMIBE	I		
Injection	Area		
Injection-1	2914140		
Injection-2	2910592		
Injection-3	2910747		
Injection-4	2913191		
Injection-5	2919374		
Average	2913609		
Standard Deviation	3570.2		
%RSD	0.12		
The results are summarized SIMVASTATIN			
Injection	Area		
Injection-1	3597821		
Injection-2	3591676		
Injection-3	3580581		
Injection-4	3592387		
Injection-5	3603865		
Average	3593266		
Standard Deviation	8621.2		
%RSD	0.24		

Table 9. Robustness Ezetimibe

S.No	Flow Rate (ml/min)	A m oo	%RSD	System Suitability Results		
		Area		Plate Count	Tailing	
	T CI	3328442		4537	1.3	
1	1 Less flow 0.6	3345692	0.016			
		3378545				
	2 Actual flow 0.8	2910592	0.830	4590	1.3	
2		2910747				
		2913191				
		2585587				
3 More no 1.0	More flow	2567893	0.3165	4264	1.3	
	1.0	2597432				

Simvastatin

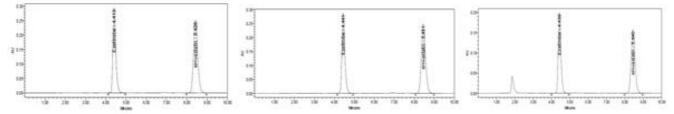
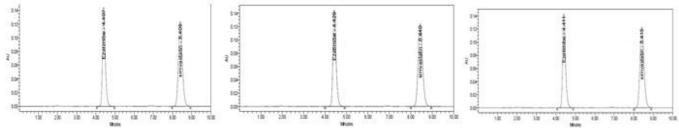
S.No	Flow Rate (ml/min)	Area	%RSD	System Suitability Results		
				plate count	tailing	
	Less flow 0.6	4109709	0.464	7869	1.1	
1		4108935				
		4106734				
2 A	Actual flow 0.8	3591676	0.340	7822	1.1	
		3580581				
	0.0	3592387				
3	More flow 1.0	3192667	0.076	7232	1.1	
		3187974				
		3184739				

S.No	Mobile Phase	A moo	%RSD	System Suitability Results	
		Area	%KSD	Plate Count	Tailing
		2891001		2013	1.7
1	Less Org	2894647	0.149		
		2894656			
		2910592		4590	1.0
2	Normal	2910747	0.830		1.3
		2913191			
		2923861		2148	1.7
3	More Org	2923464	0.292		
	2945737				
Simvastatin					
S.No		50 A n 00	%RSD	System Suitability Results	
	Mobile pha	se Area	%KSD	plate Count	Tailing

Ezetimibe

S.No	Mahila mhaaa	Area	%RSD	System Suitability Results	
	Mobile phase			plate Count	Tailing
		3580370			
1	Less Org	3589137	0.07	5332	1.2
		3570171			
		3591676			
2	Normal	3580581	0.830	7822	1.1
		3592387			
		3590821			
3	More Org	3598093	0.521	4126	1.3
		3598402			

Fig. 1. Typical chromatogram of Standard (30µg/ml of SIMVASTATIN, 30µg/ml of EZETIMIBE)

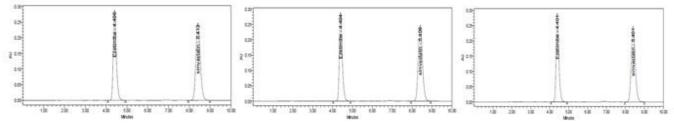
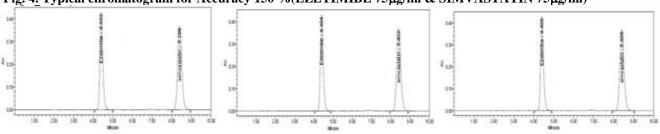
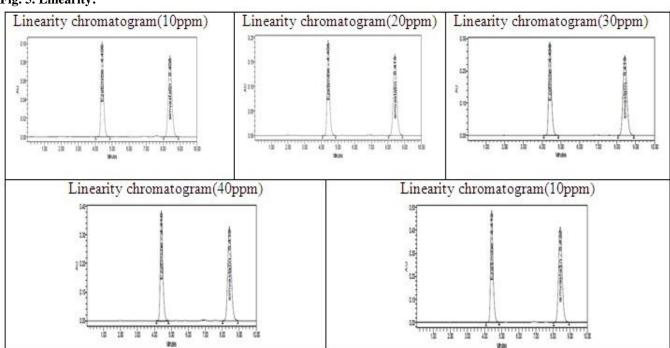



Fig. 2. Typical chromatogram for Accuracy 50 %(EZETIMIBE 45µg/ml & SIMVASTATIN 45µg/ml)



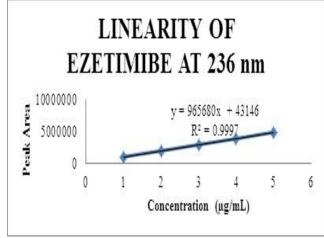
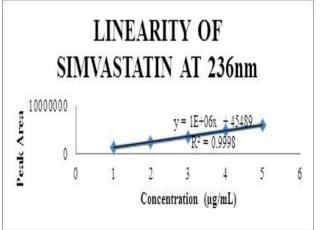
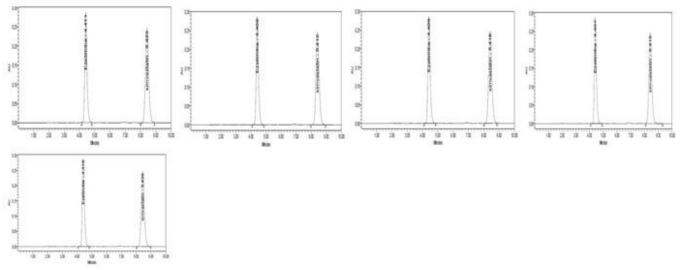
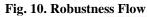


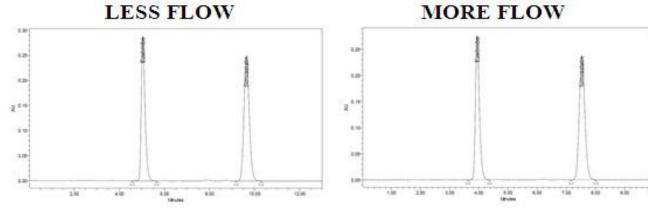
Fig. 4. Typical chromatogram for Accuracy 150 %(EZETIMIBE 75µg/ml & SIMVASTATIN 75µg/ml)

Fig. 5. Linearity:

Fig. 6. Linearity plot of EZETIMIBE

Fig. 7. Linearity plot of SIMVASTATIN



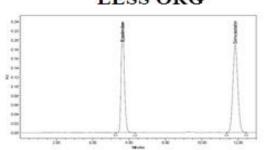
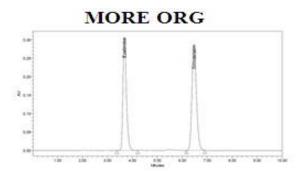


Fig. 9. Typical chromatogram for the System Precision study (Inter Day) (30µg/ml of SIMVASTATIN, 30µg/ml of EZETIMIBE)

Fig. 11. Robustness Composition LESS ORG

RESULTS

System Suitability Results


Tailing factor Obtained from the standard injection is 1.1. Theoretical Plates Obtained from the standard injection is 7822.

CONCLUSION

The proposed HPLC method was found to be simple, specific, precise, accurate, rapid and economical

REFERENCES

- 1. Sharma BK. Instrumental methods of chemical analysis, Introduction to Analytical chemistry, 23thedition, Goal Publishing House Meerut, 2004.
- 2. Willard HH, Merritt LL, Settle FA. Instrumental Methods of Analysis, 7th edition, CBS publishers and Distributors, New Delhi. 1986, pp.518-521, 580-610.
- 3. John Adamovies. Chromatographic Analysis of Pharmaceutical, Marcel Dekker Inc. New York, II Ed, 74, 5-15.
- 4. Gurdeep Chatwal, Sahm K. Anand. Instrumental methods of Chemical Analysis, 5th edition, Himalaya publishing house, New Delhi, 2002, 1.1-1.8.
- 5. DA Skoog, J Holler, TA Nieman. Principle of Instrumental Analysis, 5th edition, Saunders College Publishing, 1998, 778-787.
- 6. Skoog, Holler, Nieman. Principals of Instrumental Analysis, 5th Edition, Harcourt Publishers International Company, 2001.
- 7. William Kemp. Organic Spectroscopy, Palgrave, New York, 2005, pp.P7-10, 328-330
- 8. P.D. Sethi. HPLC: Quantitative Analysis Pharmaceutical Formulations, CBS Publishers and distributors, New Delhi (India), 2001, 3-137.
- 9. Michael E, Schartz IS, Krull. Analytical method development and Validation. 2004, 25-46.
- 10. R. Snyder, J. Kirkland, L. Glajch. Practical HPLC method development, II Ed, A Wiley International publication, 1997, 235, 266-268, 351-353, 653-600, 686-695.
- 11. Basic Education in Analytical Chemistry. Analytical Science, 17(1), 2001.
- 12. Method validation guidelines International Conference on harmonization; GENEVA; 1996.
- Berry RI, Nash AR. Pharmaceutical Process Validation, Analytical method validation, Marcel Dekker Inc. New work, 57, 1993, 411-28
- 14. Anthony C Moffat, M David Osselton, Brian Widdop. Clarke's Analysis of Drugs and Poisons, Pharmaceutical Press, London, 2004, 1109-1110, 1601-1602.
- 15. Klaus Florey, Analysis Profile of Drugs Substances, Academic Press, New York, 2005, 406-435.
- 16. P.N. Arora, P.K. Malhan. Biostatistics, Himalaya Publishers House, India, 113,139-140,154.
- 17. Doserge, Wilson and Gisvold's text book of organic medicinal and pharmaceutical chemistry, 8th edn, Lippincott Company, 1982.

for simultaneous estimation of Ezetimibe and Simvastatin in pharmaceutical dosage form. The developed method was validated in terms of accuracy, precision, linearity, robustness and ruggedness, and results will be validated statistically according to ICH guidelines. The Sample recoveries in all formulations were in good agreement with their respective label claims.